Frontiers

The US as a Frontier Society
Frederick Jackson Turner

Binnig and Rohrer, 1980's. STM – the key tool for nanoscience

DECEMBER 8-10, 2010
GAYLORD CONVENTION CENTER
WASHINGTON, DC

THANKS

Center for Nanofabrication And Molecular Self-Assembly

Institute for Bio-Nanotechnology In Medicine

Center for Nanoscale Materials

International Institute for Nanotechnology

Chad Mirkin

Nanotechnology: Frontier Grand Challenges

Complex and Useful Function From Building Blocks and Extended Architectures

Materials and Catalysis

Energy Harvesting, Storage

Molecular Diagnostics

Gene Regulation

Therapeutics

BIG PROBLEMS? CHALLENGES IN THE SOCIETY

```
Renewable energy
```

Capture

Storage

Affordable health care

Diagnostic

Therapeutic

Security

Economic

Physical

Energy

Sustainability

Carbon management

Climate change

Employment

USA - Total Energy

Production and Consumption, 2008

120-

Photosynthesis

Challenge: Mimic assembly, function, regulation, and maintenance of the **multiple nanostructure** photosynthetic apparatus.

> improve efficiency and maintenance

Energy capture

Nanobattery: Cathode made of *nanoscale* particles of LiFePO₄

Energy storage

BIG PROBLEMS? CHALLENGES IN THE SOCIETY

```
Renewable energy
Capture
Storage
Affordable health care
Diagnostic
Therapeutic
```

Security

Economic

Physical

Energy

Sustainability

Carbon management Climate change

Employment

The Grand Challenges in Nanotechnology

 Nanoscale Building Blocks and Tools for Miniaturization

 Controlled Assembly of Such Building Blocks into Hierarchical Structures

 Complex and Useful Function From Building Blocks and Extended Architectures

Diagnostics -Field Defining Technologies

Concentration Molecule/Drop

Detection/ Targets/Disease

10⁻³- Millimolar Quadrillions 10⁻⁶- Micromolar Trillions 10⁻⁹- Nanomolar Billions 10⁻¹²- Picomolar Millions 10⁻¹⁵- Femtomolar **Thousands** 10⁻¹⁸- Attomolar Tens 10⁻²¹- Zeptomolar <1

Colorimetric/ Enzymatic Chemistry Blood Sugar (Diabetes)

ELISA & Chemiluminesence Troponin, CK-MB, BNP, βHCG

Bio-barcode Technology
Alzheimer's Disease, Mad Cow,
Ovarian, Breast, and many other
cancers, Pulmonary Disease,
Cardiovascular Disease

Bio-barcode Nanoassay Detects PSA Levels Undetectable by ELISA

Blue: biobarcode assay

Red: ELISA

Polyvalent Oligonucleotide-Functionalized Nanoparticles As Antisense Agents?

Cellular Entry

Entry Appears to be by Endocytosis

TEM Image of Cell Showing Particle Localization 6 hr Post Transfection

Individual Vesicle

500 nm 60,000 X Magnification C166 (mouse endothelial) cells

Enter All Cell Lines and Primary Cells Studied

HeLa Cells

Rat Hippocampal Neurons

Cell Lines

- Breast (SKBR3, MDA-MB-231, AU-565)
- Brain (U87, LN229, U118)
- Pladder (HT-1376, 5637, T24)
- Colon (LS513)
- Cervix (HeLa, SiHa)
- Skin (C166, KB, MCF 10A)
- Kidney (MDCK)

- Blood (Sup T1, Jurkat)
- Leukemia (K562)
- Liver (HepG2)
- Kidney (293T)
- Ovary (CHO)
- Fibroblast (NIH3T3)
- Macrophage (RAW264.7)

Primary Cells

- Brain (Rat Hippocampus Neurons Astrocytes, Glial Cells)
- Bladder
- Blood (Mouse Erythrocytes, PBMC, T-cells)
- Pancreas (Mouse Beta Islets)
- Skin (mouse)

Epithelial Tumor Model

Gene Regulation Platform

Key Advantages

- A unique method for delivering large amounts of genetic material into cells as therapeutic agents
- Effective across numerous cell and tissue types (50+ cell types have been demonstrated to date)
- Stable, long-lasting intracellular activity
- Efficacious and non-toxic in animals
- Applicable to many forms of cancer, skin disorders, neurological diseases, and more
- Immediately useful as research product (Omnifectin™) with \$100MM potential
- $7 \mu m$

Carrier-Free Gene Regulation Constructs

AuruSenze

- 2 therapeutic partnerships at work-plan definition stage
- Substantial Omnifectin™ development, product marketing efforts
 AuraSen

BIG PROBLEMS? CHALLENGES IN THE SOCIETY

```
Renewable energy
      Capture
      Storage
Affordable health care
       Diagnostic
       Therapeutic
 Security
      Economic
      Physical
      Energy
```

Sustainability

Nanotechnology Research Areas That Show Promise For Innovation

Biomedical Applications Diagnostics, Imaging, Therapeutics

Photonics and Magnetics

Electronics

Energy Applications

Nanolithography/High Resolution Printing

High Perfomance
Nanostructures and
Materials (Catalysis,
Environmental
Diagnostics and
Remediation)

Why Nano?

- Nanostructure synthesis
 - Dimensional control
 - Massive arrays
 - Extremely high aspect ratios (depth/width)
- Large surface area
 - → easy access to charge storage materials
 - → high power
- Thin material layers
 - → fast transport into charge storage materials
 - mechanical flexibility to accommodate charge cycling
- Large electrode volume
 - → high energy density

AAO-ALD for MIM Electrostatic Supercapacitor

Manufacturing: Massively Parallel Capabilities

4.2 Million Ducho 2 D

1.3 Million Probe 2-D
Passive Array

Make *arbitrary* circuits/patterns – Dip Pen Nanolithography

11 Million Pen Array

Tip size: 60 10nm

DPN Applications

BIG PROBLEMS? CHALLENGES IN THE SOCIETY

```
Renewable energy
      Capture
      Storage
 Affordable health care
       Diagnostic
        Therapeutic
 Security
      Economic
       Physical
       Energy
      Sustainability
Employment/education
```


REVOLUTIONARY FORCES

Basic advancements in science and technology come about twice a century and lead to massive wealth creation.

SOURCE: Norman Poire, Merrill Lynch

There is more day to dawn The sun is but a morning star

H. D Thoreau